1359

The 2,3-Homopyrrole Ring System

By Frank W. Fowler

(Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11790)

Summary The 2,3-homopyrrole ring system has been prepared by the copper(I) bromide decomposition of ethyl diazoacetate in the presence of N-methoxycarbonyl-pyrrole.

FURAN AND THIOPHEN behave as dienes toward carbenes and carbenoids giving 1,2-addition products, whereas pyrrole and its derivatives have previously yielded only substitution products.¹ We report what we believe to be the first carbene or carbenoid addition to a pyrrole derivative providing the first synthesis of the 2-azabicyclo-[3,1,0]hex-3-ene ring system (2,3-homopyrrole).

When ethyl diazoacetate was decomposed with copper(1) bromide at 85° in the presence of *N*-methoxycarbonylpyrrole (1 equiv.) a complex mixture of products was obtained. T.l.c. of this mixture using silica gel provided a

1360

14% yield of the mono-adduct (1) and 5% of the bisadduct (2).[†] The n.m.r. spectrum (CCl_4) of (1) showed τ 3·47 (d, br, 1H, J 4·5 Hz., H_e), 4·52–4·70 (m, 1H, H_d), 5.56-6.08 (m, 3H, H_b and OCH₂Me), 6.23 (s, 3H, OCH₃), 7.12-7.40 (m, 1H, H_c), 8.75 (t, 3H, J 7.0 Hz., OCH₂CH₃), and 9.08 (t, 1H, J 2.0 Hz., H_a). Irradiation of H_a causes the signal due to H_c to collapse into a doublet (J 7.0 Hz.) of doublets (J 2.5 Hz.). Irradiation of H_c causes the H_d signal to collapse into a doublet (J 4.0 Hz.). The i.r. spectrum (neat) showed important absorptions at 3120, 3060 (vinyl and cyclopropyl hydrogens), 1720 (C=O), and 1590(C=C) cm.⁻¹ The u.v. spectrum (95%) EtOH) showed λ_{\max} 244 (ϵ 195). The mass spectrum showed a molecular ion at m/e 211 (12%) and the base peak at m/e 138 $(M^+ - CO_2C_2H_5).$

The bis-adduct (2) was recrystallized from ether-pentane to give colourless crystals, m.p. 97-98°. The n.m.r. spectrum (CCl₄) showed τ 5.83 (q, 4H, J 7.5 Hz., OCH₂Me), 6.28 (s, 3H, OCH₃), 6.60 (d broad, 2H, J 7 Hz., H_b), 7.52— 7.78 (m, 2H, H_c), 8.17-8.30 (m, 2H, H_a), and 8.72 (t, 6H, J 7.5 Hz., $-OCH_2CH_3$). Irradiation of H_a caused the signal due to H_c to collapse into a doublet (J 7 Hz.). The i.r. spectrum (KBr) showed important absorptions at 3090, 3063 (cyclopropyl hydrogens) and 1712 cm^{-1} (C=O).

The ethoxycarbonyl group would be predicted to occupy the exo-position since this is the stereochemistry of the main adduct from cyclopentadiene and ethyl diazoacetate.² The n.m.r. spectrum of (1) also suggests this configuration since the proton α to the ethoxycarbonyl group (H_a) is probably shielded by the double bond and occurs at τ 9.08. This proton (H_a) appears downfield at approximately τ 8.23 in the bis-adduct consistent with the above hypothesis and the carbocyclic analogue.³

When ethyl diazoacetate is decomposed with copper(I) bromide at 86° in the presence of (1) (1 equiv.) a 10% yield of (2) is obtained. This suggests that the ethoxycarbonyl groups are exo to the five-membered ring in (2). However, the configuration of the cyclopropyl groups with respect to each other cannot be assigned with certainty.

Irradiation of an equimolar mixture of ethyl diazoacetate and N-methoxycarbonylpyrrole using a quartz filter and a 500 w Hanovia high-pressure mercury lamp gave no detectable amount of (1). Irradiation using a Pyrex filter gave only a trace of (1).

This work was supported by the Research Corporation and the Research Foundation of the State University of New York.

(Received, September 18th, 1969; Com. 1408.)

[†] Satisfactory elemental analyses for (1) and (2) have been obtained.

¹ L. A. Paquette, "Principles of Modern Heterocyclic Chemistry," Benjamin, New York, 1968, p. 131; C. W. Rees and C. E. Smithen, Adv. Heterocyclic Chem., 1964, 3, 63. ² J. Warkentin, E. Singleton, and J. F. Edgar, Canad. J. Chem., 1965, 43, 3456.

³ H. Dürr, Annalen, 1967, 703, 109.